If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2-36=0
a = 2.5; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·2.5·(-36)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*2.5}=\frac{0-6\sqrt{10}}{5} =-\frac{6\sqrt{10}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*2.5}=\frac{0+6\sqrt{10}}{5} =\frac{6\sqrt{10}}{5} $
| −4+n=−43 | | −4+n=43 | | 6+2/5y=1/3y+61/2 | | (50)=0.09x+10.50 | | 8x−5/2=2x−6 | | X-6=-6-8x | | 5x+72=12x | | -8a+1=23 | | 8+2x=14-x | | 9.7x=2x+6 | | Y=~5x+1 | | 3x+7=6x-(5) | | 10r-5r+3r=8r | | 40=2^n | | 7z−1=8z−6 | | n−(−5)=35 | | 5x÷7x+7=30 | | x+0.1x=862276 | | 7z−1=2z−1/2 | | 7z−1=2z−1.5 | | -4/5k+2/5=2/3 | | 5÷7x+7=30 | | 63-n=24 | | 6-2/3x-10/3=4x | | 4^7x=40 | | 1.8x-3=15 | | 7a=—42 | | 4x+(10)=-4 | | y/5=21.5 | | 4x+(=10)= | | 4(w-6)=32 | | 3x+6=-42-3x |